

$$P(HB) = .6$$

$$P(FF) = .7$$

$$P(HB \text{ and } FF) = .5$$

$$P(FF \mid HB) = \frac{P(HB \text{ and } FF)}{P(HB)} = \frac{.5}{.6} = \frac{.5}{.6} = \frac{.833}{.833}$$

$$P(HB \mid FF) = \frac{P(HB \text{ and } FF)}{P(FF)} = \frac{.5}{.7} = \frac{.5}{.7} = \frac{.5}{.7} = \frac{.5}{.7} = \frac{.7141}{.714}$$

$$P(\text{math})=.6$$

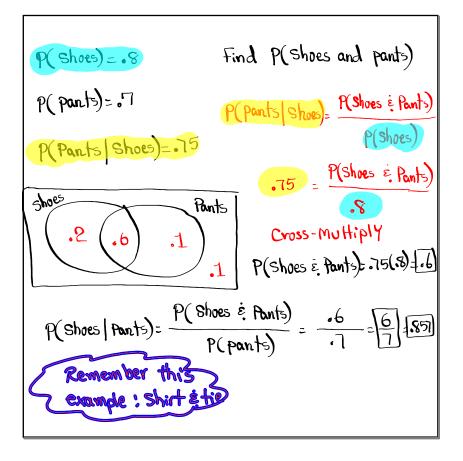
$$P(\text{calc})=.5$$

$$P(\text{math and calc})=.4$$

$$P(\text{math and calc})=.4$$

$$P(\text{calc} | \text{math})=\frac{P(\text{math } \dot{\epsilon} \text{ calc})}{P(\text{math})}=\frac{.4}{.6}=\frac{.4}{6}\cdot\frac{2}{3}=.667$$

$$P(\text{math} | \text{calc})=\frac{P(\text{m} \dot{\epsilon} \text{ c})}{P(\text{ c})}=\frac{.4}{.5}=\frac{.4}{.5}=\frac{.4}{.5}=.85$$



Prob. with at least 1:

$$P(at (east 1) = 1 - P(None))$$
3 women $\dot{\epsilon}$ 7 Men Select 3 people
NO replacement

$$P(www) = \frac{3}{10} \cdot \frac{2}{9} \cdot \frac{1}{8} = \begin{bmatrix} 1\\ 120 \end{bmatrix} www$$

$$P(mmm) = \frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8} = \begin{bmatrix} 7\\ 24 \end{bmatrix} Www$$
Some M
Some W
MMM
P(at least 1 woman) = 1 - P(NO Woman)
= 1 - P(All Men) = 1 - \frac{1}{24} = \begin{bmatrix} 1\\ 24 \end{bmatrix}
$$P(at least 1 Man) = 1 - P(No Man)$$

$$= 1 - P(All W) = 1 - \frac{1}{20} = \begin{bmatrix} 19\\ 120 \end{bmatrix}$$

5 Red & 10 Blue balls.
Select 4 Balls, No replacement

$$P(4 \text{ Red Balls}) = \frac{5}{15} \cdot \frac{4}{14} \cdot \frac{3}{13} \cdot \frac{2}{12} = \frac{1}{273}$$

 $P(4 \text{ Blue Balls}) = \frac{10}{15} \cdot \frac{9}{14} \cdot \frac{8}{13} \cdot \frac{7}{12} = \frac{2}{13}$
 $P(4 \text{ Blue Balls}) = \frac{10}{15} \cdot \frac{9}{14} \cdot \frac{8}{13} \cdot \frac{7}{12} = \frac{2}{13}$
 RRR
Some R
Some R
Some B
B B B B P(ot least 1 Blue) = 1 - P(NO Blue) = 1 - \frac{2}{213}

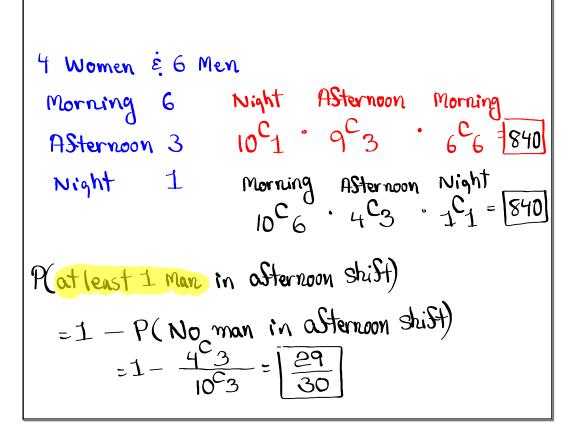
3 Women
$$\xi$$
 7 Men Select 3 people
No replacement.
1) How many ways Can this be done?
10 3 = 120
10 MATH PRB nCr 3 Enter
2) How many ways Can Select 3 Women?
3 2 3 = 1
3) P(3 Women) = $\frac{3^{C_3}}{10^{C_3}} = \frac{1}{120}$
4) P(3 Men) = $\frac{7^{C_3}}{10^{C_3}} = \frac{35}{120} = \frac{7}{24}$
5) P(1W 2M) = $\frac{3^{C_1} \cdot 7^{C_2}}{10^{C_3}} = \frac{63}{120} = \frac{21}{40}$
6) P(2W 1M) = $\frac{3^{C_2} \cdot 7^{C_1}}{10^{C_3}} = \frac{21}{120} = \frac{1}{40}$

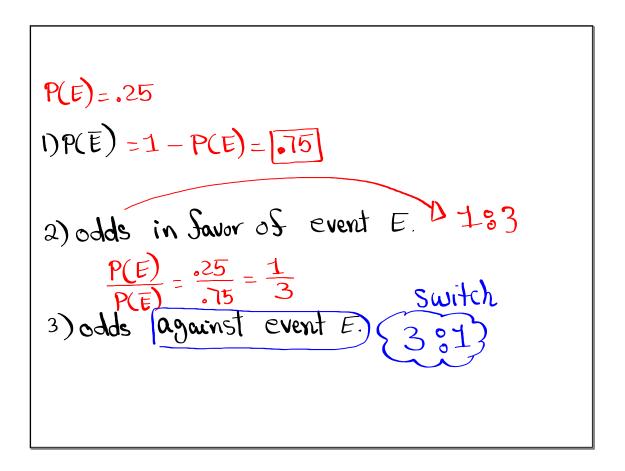
4 Quarters & II Nickels Select 2 Coins
No replacement
QQ
$$\rightarrow 50$$
 $P(50$ $e) = \frac{4^{2} \cdot 11^{6} 0}{15^{6} 2} = \frac{2}{35}$
QN
NQ $\rightarrow 30$ $P(30$ $e) = \frac{4^{6} \cdot 11^{6} 1}{15^{6} 2} = \frac{44}{105}$
NN $\rightarrow 10$ $P(10$ $e) = \frac{4^{6} \cdot 12}{15^{6} 2} = \frac{11}{105}$
NN $\rightarrow 10$ $P(10$ $e) = \frac{4^{6} \cdot 12}{15^{6} 2} = \frac{11}{105}$
NN $\rightarrow 10$ $P(10$ $e) = \frac{4^{6} \cdot 12}{15^{6} 2} = \frac{11}{105}$
Total e $P(10$ $e) = \frac{4^{6} \cdot 12}{15^{6} 2} = \frac{11}{105}$
Total e $P(10$ $e) = \frac{4^{6} \cdot 12}{15^{6} 2} = \frac{11}{105}$
Total e $P(10$ $e) = \frac{10}{105}$
Total e $P(10$ $e) = \frac{10}{155}$
Total e $P(10$ $e) = \frac{10}{105}$
 10 $11/21$ $Z = 20.667$ $S = Blank$ 12
VARS 5 : Statistics 4 : 0 E Z^{2} $math$ 12 $Enter$ $\frac{9152}{63}$

A Standard deck of playing Cards has
52 Cards, 12 Sace cards, 4 Ares.
Draw 3 Cards, No replacement

$$P(2Sace \not\in 1 ace) = \frac{12}{52} \cdot 4 \cdot 1 = \frac{66}{52} \cdot 525$$

 $P(1Sace \not\in 2 aces) = \frac{12}{52} \cdot 4 \cdot 2 = \frac{18}{5225}$
 $P(1Sace, 1 ace, and 1 others) = \frac{12}{52} \cdot 4 \cdot 2 = \frac{18}{5225}$





T

Odds Sov Certain event E are 33:7
Nodds against event E. Switch

$$7:33$$

2) $P(E) = \frac{33}{33+7} = \frac{33}{40}$
 $3)P(E) = \frac{1}{33+7} = \frac{1}{40}$

Г